Printed Page: 1 of 2

Subject Code: KCE601

BTECH

Roll No:

(SEM VI) THEORY EXAMINATION 2021-22

DESIGN OF CONCRETE STRUCTURES

Time: 3 Hours

Notes:

Total Marks: 100

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly. IS 456:2000 ALLOWED

SECT	ION-A	Attempt All of the following Questions in brief	Marks (10X2=20)	
Q1(a)	What are	the disadvantages of R.C.C. structures?		1
Q1(b)	Write the	data required for Design mix concrete.		1
Q1(c)	Draw crac	ck pattern in simply supported beams.		2
Q1(d)	Where bo	ond stress developed in a steel bar and concrete?		2
Q1(e)	Draw the	neat sketch of reinforcement in one way slab.		3
Q1(f)	Define landing and riser.			
Q1(g)	With neat	sketch define axially loaded column.		4
Q1(h)	Why all c	olumns shall be designed for minimum eccentricity?		4
Q1(i)	Write the	purpose of foundation in a structure?		5
Q1(j)	Which cas	ses retaining walls constructed?		5
		6		

SECT	ION-B	Attempt ANY THREE of the following Questions	Marks (3X10=30)	
Q2(a)	Find the r	noment of resistance of a R.C.C. beam 300 mm wide	and 500 mmm	1
	effective of	depth is required is reinforced with 3 bars of 16 mm.	Use M20 concrete	
	and Fe41:	5 steel. By Working stress method.		
Q2(b)	An R.C.C	beam 200 mm x 400 mm effective carries a uniforn	nly distribute load of	2
	70 kN/m	over a clear span of 6m. The beam is reinforced with	1% steel on tension	
	side comr	nent on the shear design of the beam. Using m20 con	crete and load factor	
	=1.5	FION		
Q2(c)	Write the	design steps of one way slab.		3
Q2(d)	Classify t	he columns for material of construction. Why R.C.C.	column are used	4
	instead of	plain cement concert?		
Q2(e)	A brick m	asonry Wall 230 mm thick carries a load of 370 kN/r	n incusive of its own	5
	weight . I	Design the footing of the wall, take bearing capacity	of soil as 150 kN/m ² at	
	1 m depth	. Use M20 concrete. For strip footing.		
	•			
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	

 Q3(a)
 A simply supported R.C.C. beam 250 mm wide and 450 mm deep (effective) is reinforced with 4-18 mm diameter bars. Design shear reinforcement if M20 grade of concrete and Fe415 steel is used and beam is subjected to a shear force of 150 kN at service load.
 1

 Q3(b)
 Write the design steps of simply supported beam, check all codal regirements
 1

$Q_{2}(0)$	write the	design st	eps of si	mpiy su	pported	beam.	спеск	all codal	reqirement	s.

SE	SECTION-C Attempt ANY ONE following Question Marks (1X10=10)				
Q4((a)	Write the	design procedure of RCC beam subjected to equivale	ent shear force and	2
		equivalen	t bending moment.		
Q4((b)	An RCC b	beam 250 mm x 500 mm has a clear span of 5.5 m . T	The beam has 2-20	2
		mm dia ba	ars going on supports , Factored shear force is 140 kM	N. Check for	
		developm	ent length if Fe415 and M20 grade of concrete is use	d. Take effective	
		cover $\overline{30}$ r	nm.		

Download all NOTES and PAPERS at StudentSuvidha.com

Printed Page: 2 of 2

BTECH

(SEM VI) THEORY EXAMINATION 2021-22

D	ESIGN	OF CO	NCRETE	L STRU	JCTURES	

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
	Q5(a) Design a simply supported roof slab for a room 7.5 m x 3.5 m clear in size. The slab			3
	is carrying	g an imposed load of 5 kN/m ² . Use M20 Concrete an	nd Fe415 steel. And	
	also check	for deflection		
Q5(b)	b) Calculate the long term deflection of a simply supported beam 300 mm x 600 mm		3	
	spanning	over 5 m. It is reinforced with 4 bars of 20 mm diam	neter on tensile side. It	
		ed to an imposed service load of 20 kN/m including		
	cover to te	ension steel is mm. Use M 20 and Fe415 . $I_{eff} = 3.613$	$87 \text{ X } 10^9 \text{ mm}^4$,	
	$\Delta e = 2.011$	mm.		

SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q6(a)	Design a s	short RCC column to carry an axial load of 160 kN. I	It is 4 m long,	4
	effectively	y held in position and restrained against rotation at be	oth ends. Use M20	
concrete and Fe415 steel. Show the reinforcement detail.				
Q6(b)	Find the u	niform depth of rectangular footing of uniform thick	ness for an axially	5
	loaded co	lumn of size 300 mm x 600 mm load on column is 1	150 kN. Safe bearing	
	capacity c	f the soil is 200 kiN/m^2 . Use M20 concrete and Fe4	15 steel. (i) By one	
	way shear	criteria (ii) By B.M. criteria.		
	• • • • • • • • • • • • • • • • • • •		•	
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q7(a)	With neat	sketch explain the deflected shape of a cantilever re	taining wall under	5
	loading fo	r Stem, Heel slab, Toe slab.		
Q7(b)	Check for	stability condition of cantilever retaining wall to re	etain horizontal	5
	earthen er	nbankment of height 4 m above the ground level. T	he earthen backfill is	
		1 - 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +		

having a density of 18 Kn/m³ and angle of repose is 30⁰. The safe bearing capacity of soil is 180 kN/m². The coefficient of friction between soil and concrete is 0.45. Use M20 and Fe415.

Subject Code: KCE601